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Classical statistical mechanics of a sine-Gordon and double 
sine-Gordon chain with long-range interactions 

M Croitoru 
Department of Fundamental Physics, Institute for Physics and Nuclear Engineering, PO 
Box MG6, Bucharest, Romania 

Received 21 June 1988 

Abstract. The formalism developed by Sarker and Krumhansl for the investigation of a 
4~~ system with long-range interactions of the Kac-Baker type is extended to the study of 
the thermodynamical properties of a sine-Gordon (SG) and a double sine-Gordon (DSG) 
chain with long-range interactions. This extension enlarges the class of non-linear systems 
which can support kink solutions. In the continuum limit we deduce compact analytical 
expressions for the se-kink solutions and the Dsc-kink solutions as well as for their 
associated energies. Both the kink solutions and the kink energies depend on the kink 
width. As the interaction range increases it is found that the kink width and the kink 
energy increase indefinitely-the kinks disappear. Consequently one can consider the kinks 
as ‘elementary excitations’ only in the limit of not too large interaction ranges, when they 
will destroy long-range order in the system. For this limit we determined the phonon and 
kink contribution to the free-energy density at low temperatures. For the infinite interaction 
range limit we found that the two systems studied undergo a second-order phase transition. 
The critical behaviour is-as expected-similar to that of the 94 system with long-range 
interactions. 

1. Introduction 

It is now well recognised that in many areas of physics it is important to study non-linear 
equations which possess large-amplitude solitary wave or kink solutions in addition 
to the small-amplitude modes (phonons, spin waves) characteristic of the linearised 
equations. Therefore studies concerning the dynamical and thermodynamical proper- 
ties of kink-bearing systems have been of considerable recent interest, the role which 
the kinks (solitons) play in the low-temperature thermodynamics being very well 
established. The investigation of different systems subjected to non-linear substrate 
potentials like the 44, double quadratic (DQ), sine-Gordon ( S G )  (Krumhansl and 
Schrieffer 1975, Gupta and Sutherland 1976, Guyer and Miller 1976, DeLeonardis and 
Trullinger 1979, Trullinger and DeLeonardis 1979, Bishop et a1 1980, Currie et a1 1980) 
as well as double sine-Gordon (DSG) (Condat et a1 1983, DeLeonardis and Trullinger 
1983, Leung 1982, 1983, Pandit et a1 1983a, b, Giachetti er a1 1984) or other doubly 
periodic parametrised symmetric and asymmetric potentials (Remoissenet and Peyrard 
1984, Croitoru 1987) has been limited to one-dimensional models and nearest-neigh- 
bour (NN) interactions between the atoms of the chain. These limitations are essentially 
due to the mathematical difficulties encountered in investigating models of higher 
dimensions or by taking into account, for ID  models, interactions of longer than N N  
range. Recently, there have been reported studies of systems which include next- 
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846 M Croitoru 

nearest-neighbour (NNN) interactions (Pnevmatikos 1984, Flytzanis et a1 1987), and 
even use long-range interaction potentials of the Lennard-Jones type (Ishimori 1982). 
Other interesting results have been obtained by investigating a non-linear system of 
the 94 type (Sarker and Krumhansl 1981) and an anharmonic chain (Remoissenet and 
Flytzanis 1985) with a long-range Kac-Baker interaction potential. While Sarker and 
Krumhansl (1981) studied the effect of the kink solutions on the thermodynamics of 
the rP4 system, Remoissenet and Flytzanis (1985) concentrated solely on the dynamics 
of the anharmonic chain with long-range interactions. 

The purpose of this paper is to study the properties of sine-Gordon and double 
sine-Gordon systems with long-range Kac-Baker interaction potentials, in which the 
interaction between the particles falls off exponentially as exp( - y x )  as their separation, 
x, increases. 

In 9 2 we present the Hamiltonian of the systems under study and, paralleling the 
procedure developed in Sarker and Krumhansl(1981), we briefly sketch the derivation 
of the associated equation of motion. Subsequently, we determine in closed form its 
small-amplitude (phonon) and large-amplitude (kink) solutions in the continuum limit. 
We also succeed in deriving compact expressions for the kink energies. In 9 3 we treat 
the classical statistical mechanics of the two chosen systems in two limiting cases: (i) 
y >> 1, in which the interaction range does not go far beyond the nearest neighbours; 
and (ii) y+O, the infinite interaction range limit. The method adopted to perform 
these studies is that developed in Sarker and Krumhansl (1981) and is based on a 
transformation which converts the partition function into a functional integral in which 
the effective interaction couples only NN. Section 4 summarises the main results. 

2. Excitations of the SG and DSG systems 

Let us consider a one-dimensional system of N atoms governed by the Hamiltonian 

Here +i  represents the one-component dimensionless scalar field, A is a constant which 
sets the energy scale, and co and oo are respectively a characteristic velocity and a 
characteristic frequency. The lattice constant I and the mass rn of the interacting 
particles are taken to be unity. The atoms labelled by the indices i, j are assumed to 
interact via a pair potential of the Kac-Baker form 

where r = exp( - y ) ,  and y-' essentially defines the interaction range. There are two 
requirements which one has to impose on the second term of (1). First, in the limit 
r + 0, y + a, the Hamiltonian (1) has to describe a non-linear system with 'NN interac- 
tions. The presence of the factor r-l ensures the fulfilment of this requirement. 
Secondly, for any value taken by r in the interval (0, l), the thermodynamic limit has 
to exist, i.e. the total interaction potential experienced by an atom of the chain from 
all the other atoms has to be finite. Due to the introduction of the factor (1 - r )  this 
condition will also be fulfilled. 
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The non-linear potential V ( 4 )  which appears in ( 1 )  will be considered to be of 
the following two forms: 

SG potential V(4)=1+cosqb 

DSG potential 
2 

1 - f f  V (  4) = Y ( C 0 S  & - a)’ 

where the parameter a is confined to the interval 0 6  a < 1. For a = 0, equation (3b)  
transforms into (3a). The potentials (3a) and (3b)  possess (Condat eta1 1983, 
DeLeonardis and Trullinger 1983) the following symmetry and periodicity properties: 

V ( 4 )  = V(-4)  
V ( 4 )  = V ( 4  +P) 

with p = 2~ (SG) and p = 4 n  (DSG). 
While the potential (3a )  is characterised by potential barriers of equal height and 

potential wells of equal curvature, the DSG potential (3b) possesses potential barriers 
of two different heights, but two adjacent minima have the same shape. For the SG 
potential the local minima are found at 

n = 0 ,  k l ,  1 2 , .  . . 4 = (2n + l ) ~  (4a) 

4 = 2 m  n = 0 ,  *l ,  * 2 , .  . . . (4b) 

V ( 4  = 2 m )  = 2 (5a)  

V ( 4  = (2n + 1 ) ~ )  = 0. ( 5 6 )  

while the local maxima are found at 

We note that for 4 = 2vn,  the potential takes the constant value 

and for 4 = (2n + 1 ) l r  we have 

At the local minima the second derivative V ” ( 4 )  is normalised to unity. 
In the case of the DSG potential (3b) the local minima are situated at 

4 = i q 5 , + 4 m  n = 0, *, * 2 , .  . . ( 6 a )  

where 

41 = 2 cos-’ ff 

and the local maxima are found at 

4 = 4 ~ n  n = 0 ,  *l ,  * 2 , .  . . 
and at 

4 = 27r(2n + 1)  n = 0 ,  *l ,  * 2 , .  . . . 
At the points ( 6 b )  and ( 6 c )  the potential barriers are of the following heights: 

(7) 

1 - f f  
V ( 4  = 4 m )  = 2  - 

l+ff 
(low barrier) 

( 8 b )  
l + f f  

V ( 4  = 2 ~ ( 2 n  + 1 ) )  = 2 - 
1 - f f  

(high barrier) 
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and for 4 = *#q + 4 m ,  V(4)  = 0. The second derivative V”(4) corresponding to the 
local minima ( 6 a )  is normalised to unity. This property does not imply that the 
curvature of the DSG potential wells does not depend on the parameter a. Indeed, 
discarding the denominator ( 1  - a2)  in ( 3 b )  one gets 

v”( = * 41 + 4Wl) = 1 - a2. (9) 

Consequently for a + 1, the bottom of the potential wells becomes very flat. In the 
following we will always restrict our attention to very small values of a. 

The equation of motion associated with (1 )  can be written 

The main problem now is to reduce (10) into an equivalent ‘nearest-neighbour’ problem. 
This is achieved by introducing the quantity (Sarker and Krumhansl 1981) 

Substitution of (11 )  into (10) gives 
dV 

Li = rji+2c;rpi+w;-. 
d 4i 

Here we have used the relation 

Now, 

but by use of (11)  this becomes 

(14’) 
1 - r  

r 

We remark that only ‘nearest-neighbour’ quantities are involved in (14’). Assuming 
(Sarker and Krumhansl 1981) that the lattice constant is much smaller than the width 
of a kink (than the wavelength of the phonons) the quantities Li+l (I,,-,) and the field 
variables q5i+l ( 4i - l )  can be expanded in Taylor series about the lattice position labelled 
by i. Then, in this limit-the continuum limit-all quantities which appear in (14’) 
can be assumed to become continuous functions of the position variable x. Therefore 
we may write 

Li+l+Li-l = ( r + r - ’ ) L i + c ~ - ( 2 r ~ i - ~ i + l - + i - l ) .  

4i + 4(x )  Li + L(x) 

+ i + l +  4 i - 1 - 2 4 ( ~ )  + 4”(x) 
(15) 

Li+l+ Lj-* = 2 L ( x )  + L”(x) 
and by also taking account of (12) we obtain the final form of the equation of motion 

4tr-C2(r)4xx = - ~ ~ ~ ’ + f ~ ~ ~ ~ ~ i ~ ~ : x + t ~ ~ x x x ~ + 4 r i , x x l + ~ ~ 2 ~ ~ ~ 4 x x x x  (16) 
where 

d2 V’ V’ =- 
d d  dt2 xx dx2 xx dx2 

d24x 4 =- d V  d24x 
411 =- V’=- 
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and so on, and 

l + r  r 
c’( r )  = - f ( r )  =m. (1 - 1)’ co 

While c( r )  represents a velocity dependent on the parameter r, f ( r )  is a factor which 
characterises the dispersion terms involved in (16). For r = 0, (16) recovers the well 
known equation of motion of a non-linear system governed by N N  interactions. 

In the following we shall show that for the two non-linear substrate potentials ( 3 a )  
and ( 3 b ) ,  equation (16) supports kink solutions as well as small-amplitude oscillations. 
It is our aim to derive their analytic expressions together with the kink energies. 

2.1. Small-amplitude solutions 

By discarding in (16) the fourth-order derivative with respect to the variable x, we 
look for small-amplitude solutions both about the top of the potential barriers and 
about the bottom of the potential wells. 

2.1.1. Oscillations about 4 corresponding to the top of the potential barriers. In the SG 

case we look for solutions of the form 

exp[i(qx - w t ) ]  

and in the DSG case for solutions of the form 

4 - 27rn - exp[i( qx - w t ) ]  n = 1,2, . . . . 
For both non-linear systems ( 3 a )  and ( 3 b ) ,  the dispersion relation is of the same form, 
namely 

where q represents the wavevector, and c ( r )  and f ( r )  are defined in (17). Here the 
wavevector q has to satisfy the inequality 

otherwise the frequency U’, becomes negative. 
The energy of these phonons is given by 

E = A ~ : L +  fiw (20) 
where L is the length of the chain. The first term in (20) is due to the contribution of 
all atoms contained in the chain. 

2.1.2. Oscillations about the bottom of the potential wells. The solutions we look for 
are of the form 

4 - 4 m - e x p [ i ( ~ - w t ) l  
with 4m = 7r in the SG case and 4m = 4,,’ in the DSG case. 

dispersion law 
Again, for both non-linear potentials ( 3 a )  and ( 3 b )  we obtain the same 
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In this case there does not exist any restriction which has to be satisfied by the 
wavevector q. 

As expected, for r = 0 (21) is the well known dispersion relation corresponding to 
a sine-Gordon system with single or double periodicity and with NN interactions: 

w 2 , = W O + W 0 q .  2 2 2  

2.2. Kink solutions 

In order to obtain an equation which, with properly chosen boundary conditions, 
yields kink solutions we neglect in (16) all derivatives of higher than second order. 
This step is in the spirit of the continuum approximation, and moreover all neglected 
terms will disappear from (16) for U = 0 and/or r = 0. Thus we have to look for solutions 
of the equation 

( c ’ ( r ) - U 2 ) ~ 2 2 - o ~ v ’ + f ( r ) W ~ V : , = 0  (22) 

t2 = (c2( r )  - v 2 ) / o i  (23a) 

f l = f ( r ) / 5  (23b) 

d24 /dy2+~(V’ ) , -  V’=O (22’) 

where z = x - ut, U being the velocity of the moving kink. If we introduce the quantities 

and a new variable y = 215, then (22) transforms into 

which, for r = 0, is the well known equation of motion of a non-linear system with NN 
interactions. 

For the non-linear substrate potentials (3a) and (3b), equation (22’) supports kink 
solutions which have to satisfy boundary conditions. 

(i) In the SG case the conditions are 

4(Y) = 7T d 4 l d y  = 0 for y = *CO. (24) 

4=41 d+/dy = 0 for y = fm (25a) 

(ii) For the DSG chain there is a set of conditions for the first kink solution 

and another set for the second kink solution 

4 = 4 T -  41 = $2 d+/dy = 0 for y = *CO. (25b) 

Here 41 is defined in (7). While for the SG system there exists a single kink solution, 
for the DSG system we have two different kink solutions. The type-I kink evolves the 
system from one well to the adjacent one over the type-I barrier (the small barrier 
(8a)), while the type-I1 kink describes the evolution of the system over the type-I1 
barrier (the high barrier (8b)). With the above stated boundary conditions, equation 
(22’) can be integrated for the two models under consisideration, to give 

J 1  +U sin’ ;+ 
SG system *=m 

dY 1 + UV“ 
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Obviously the potential ( 3 a )  is involved in ( 2 6 a ) ,  whereas the potential in (26b)  is 
( 3 6 ) .  The integration of ( 2 6 a )  and (26b)  yields the kink solutions which, especially 
for the DSG model, are rather complicated expressions. 

For the SG system this kink solution is 

JFG J 1 +  u sin’ $4 + J G  sin ;+ 
2 In(jl+ u sin’ & -41  + u sin $4 

*y=- - 2 6 1 n ( J 1 + u  s i n 2 f 4 + 6 s i n f 4 ) .  

(27 )  
For the DSG system the kink solutions are 

41 -a’+u sin’ $ - G s i n  4 
x In( J 1  -a’+ u sin’ cJ +Jl+a sin $ *)I 

( F  - F - n +A)  Ua - 
J 1 - a 2 + u  

Ua ’ 
2(1 -aZ)- 

(286)  
J 1  -a’+u sin’ $--sin 

41 -a’+ u sin’ J+Jl+a sin In( 
- 

Here the superscripts I and I1 label the two different kink solutions, and for the field 
variable we have introduced the notation 

6 =;+ - 2 v n  $ = $4 - 2 v (  n + ;) n = 0, k l ,  * 2 , .  . . . 
The various elliptical integrals of the first and third kinds are defined as follows: 

F = F ( i v ,  k) P = F ( ; v - & ,  k) = F ( ; v -  4, k) 
2 

(29 )  
II=rl(;v, -l/a’, k) I?=rl($v-$, -l/a‘, k) A = rI& - ;, -l/a’, k) 
and 

k’ = a/( 1 - CY’+ U). (30 )  
From ( 2 8 a )  and (28b)  it follows immediately that for a = 0, y “ )  = y‘”) = y becomes 
the SG kink solution (27 )  and for U = 0, we recover the two kink solutions of the DSG 
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chain with N N  interactions (DeLeonardis and Trullinger 1983). Moreover, for CY = 0 
and u=O we get 

4 = 4 tan-'[ tanh( * 7*)]. 
In equations (27), (28a), (28b) and (31) the positive (negative) sign corresponds to 
the kink (antikink) solution. We conclude this subsection with some comments both 
with respect to the two parameters a, 5 and to the kink solutions. The U term in the 
equation of motion (22') breaks the Lorentz invariance of the short-range problem. 
The parameter U is always small, and for r +  1 it approaches its limiting value 
w$/2ci= 1/2d, where d measures the width of a kink corresponding to a nearest- 
neighbour interaction problem. The quantity ( defined by (23a) and involved in the 
kink solutions via the variable y ,  has the dimension of length, which for a static kink 
(U = 0) becomes (, = c ( r ) / w o .  It is a measure of the width of a kink, and diverges as 
( 1  - I ) - ' .  Thus the kinks are of finite width, only for small values of r while for r +  1 
they slowly disappear; the width becomes infinite, and in accordance with (27), (28a) 
and (286), the field variable 4 = 2 r n  ( n  = 0, 11, 1 2 , .  . .) for all values of x. This means 
that the particles cease to jump from one well to the adjacent one; they remain sitting 
on the top of the potential barriers, both in the SG and DSG systems. 

2.3. The kink energy 

In order to derive compact expressions for the energy of the SG kink as well as of the 
two DSG kinks, we start from that part of the Hamiltonian (1) which includes all the 
potential terms: 

Taking into account ( 1  1 ) - (  13) and adopting the continuum limit, (32) transforms into 

where y = (x - u t ) / &  and & ( Y )  represents a kink solution, being given either by (27) 
or (28a) and (28b). Remarking that d 4  = q ! ~ ~  dy ,  the three intregrals which appear in 
(33) can be written as 

~ ~- 
Here +y  is given by (26a) and (26b) ,  E, represents the kinetic energy and +mi,, the 
value of + taken at the bottom of the well. In the SG case &,,in= 71; and in the DSG 
case, there exist two minima within a period of the potential, namely at + = and 
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at 4 = 4.rr - = 42. Performing the integrations we obtain for the SG system: 

E , = E , + E 2 = 2 A ~ o i  3 G -  2 6 - -  tanh-' - [ ( 2 Cl ( 3 5 a )  

and for the DSG system: 

(4 J l - a Z + u  J 1 - a Z + u  (P - F )  - 4a 
l - a 2  1 - a z  

+ 2a 

and 

J1-cu2+cr z 
( E  - E ) ]  

J 1 - a 2 + a  z - 2a ( F  - F )  + 4a 
1 - a 2  1-a2 

Here the quantities la, Ib, Iz and Ig are defined by 

IC= ( 1  - c2k2)(c -a) 

-- 
a2J1 - k2E2 

J1 -  a z J 1  - k2E2 - -> 1 + --In 
241 - C2J1 - E2k2 

) - k2E( a + E ) (  f i  - F )  + (z - E )  
m - k m  

4 7  + k ( a  + E )  In( 

where c is taken to represent either a or 
latter parameters are defined by 

a = a[ a + ( I /  k ) J8  + a2k2]  
a ' = - a [ a - ( l / k ) m ]  

b, while c" represents either a" or 

b =:[a - ( 1 /  k ) J8  + a2k2]  
d =  - a [ a + ( l / k ) m ]  
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and k is given by (30). The elliptical integrals of first, second and third kinds involved 
in relations (36a), (37a), (38a) and (38b) are defined in the following way: 

F = F($.rr, k )  F=F($.rr-$f$, ,  k )  F = F($T k )  

E = E($.rr, k )  E = E ( f T - f f $ , ,  k) i = E ( $ T - f f $ l ,  k) (40) 
rI,=rI($.rr, -1/c2, k) fic=rI(f.rr-&l, - 1 / c 2 ,  k )  f i , = r I ( $ . r r - f f $ l , - 1 / C 2 , k )  

and II, fi;, fi; are obtained from II,, fi,, fi, by replacing c by C. 
In the limit CY = 0 equations (36a) and (37a) transform into (35a). For r = 0 (a. = 0), 

we recover the well known results of either the SG or DSG systems with NN interactions. 
Since the kink energies (35a), (36a) and (37a) are proportional to 6, they will increase 
indefinitely as r + 1. Therefore only for small values of r will the kink energies associated 
with the SG and DSG kinks (27), (28a) and (28b) be finite, and in this case the kinks 
can be regarded as 'low-energy excitations', which in the low-temperature limit will 
show up in the free energy of the systems under study. As r +  1 the kink activation 
energy becomes indefinitely large. These kinks of infinite width and very high activation 
energy will not determine the low-temperature thermodynamical properties of the 
systems under study. Though the kink solutions (27), (28a)  and (28b) and the kink 
energies (35)-(38) are quite different from those deduced for the f$4 system with 
long-range interactions (Sarker and Krumhansl 198 l ) ,  as expected, their qualitative 
properties are similar. 

3. Statistical mechanics 

In this section we present our results concerning the thermodynamical properties of 
the SG and DSG chain with long-range interactions, with the objective of identifying 
kink contributions to the free energy in the limit of small r and also to demonstrate 
the existence of a second-order phase transition in the van der Waals limit r + 1 .  These 
two objectives will be achieved via the determination of the partition functions of the 
systems under consideration. 

The classical partition function, for N interacting particles, governed by the 
Hamiltonian ( l ) ,  is given by 

and factorises into the configurational and kinetic parts 

where 

and 
+m 

2, = I_, * 
with 

z = z,z, 

2 N/2 Zd = (2vA/Ph ) 
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Here /3 = (kBT)-l, kB being the Boltzmann constant, and V ( 4 )  is given by (3a) and 
(3b) .  The principal task consists in the evaluation of Z,  in a closed form. For the 
Kac-Baker potential (2) the functional integral for Z,  can be transformed into an 
equivalent N N  problem, and moreover, as has been shown by Sarker and Krumhansl 
(1981), this NN problem not only reduces to the integral equation of Krumhansl and 
Schieffer (1975) in the limit r = 0, but is applicable to any type of field variables and 
for arbitrary local interactions W( 4). In this equivalent N N  formulation, the partition 
function 2, takes the form 

Here 
+m 

G(u, U’) = j-, d 4  exp[-pW(4)+PAcg(l- r )+u’ ] s (u  - 4 - u ’ r )  (46a) 

N 

and satisfy the recursion relations 

U, = #Ji + Wj+1 j = l , 2 , .  . . , N-1 (48a) 

= 4 N .  (48 b 1 
The S function involved in (46a) and (46b) ensures that the integrations over the 
auxiliary variables ui are restricted by (48a) and (46b). As it stands, (45) can be 
regarded as a repeated operation of an integral operator, the eigenvalues of which are 
given by 

dui+l G(ui, ui+I)$n(ui+l) = An$n(ui) (49a) 

Here I),, and ln are the right and left eigenfunctions of the asymmetric integral operator, 
satisfying the normalisation relation 

For the determination of the eigenvalues one can use either (49a) or (49b). Since for 
the systems under study W ( u )  = W ( - U ) ,  the asymmetric kernel G has a definite parity, 
G(u, U’) = G(-u, -U’). Then the eigenfunctions are either even or odd. For even 
eigenfunctions (49b) reduces to Baker’s functional equation for the Ising model (Baker 
1961) and also to that derived for the Ising and Potts models by Viswanathan and 
Meyer (1977) who showed that the eigenvalues are real and that the largest one is 
positive. Therefore in the following we shall use (49b). 
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In the thermodynamic limit (L +- CO, N + CO, with L/ N constant) the configurational 
part of the partition function 2, is dominated by the largest eigenvalue A o ,  and the 
free energy per unit length ( F  = - (1/pL) In 2, where L = N, because we have assumed 
the lattice constant 1 = 1) becomes 

3.1. Low-temperature properties in the limit of small r 

As shown in 9 2, for small values of the parameter r, the width of the kink solutions 
(27), ( 2 8 ~ )  and (28b) is finite, and the kink activation energies (35a), (36a) and (37a) 
are also finite quantities. Then, in the low-temperature limit one can expect a contribu- 
tion of these kinks to the free energy of the systems under study. In this case, under 
some restrictive conditions, the integral equation (49b) can be converted into a pseudo- 
Schrodinger equation which depends on a large parameter. In order to determine the 
eigenspectrum of this equation one can make use of asymptotic methods (Croitoru 
et a1 1984, Croitoru 1987) known from the theory of second-order differential equations 
which depend on a large parameter (Nayfeh-Hasan 1973). To perform this programme 
we start by writing (49b) in a more explicit form 

du'  exp[-P W (  U'- ru) +Ac:p(l- r ) (  U' - r u ) u ] J ( u ' )  = A J (  U )  (52) I 
where 

Pw( U'- T u )  = K [  v( U'- T u )  + d2( U'- t14)2], (53) 

l(u) =exp[&d2(1 -r)u2]h(u) (54) 

Here K = APw:, d = co/wo, and V ( u ' -  ru)  is of the form (3a)  and ( 3 b ) .  By introducing 

into (52) we can obtain a more symmetric form of the kernel, namely 

d U' exp{ - K [ V(  U' - ru ) + $( 1 - r)*& U - u ' ) ~ ] }  h ( U ') = Ah ( U )  ( 5 5 )  I 
where we have accounted for (17) and (23a), & being the width of a static kink. 
Introducing the notation 

equation ( 5 5 )  becomes 
t m  

4 G I - r  du 'exp[-~v(u ' - ru) ]exp  S(u-u')h(u')=Ah(u).  

Here by definition 

exp( -2) = d G e x p ( -  'g ,)S(x). 
277 2 dx 

( 5 5 ' )  

(57) 

If both K<< 1 and '<< 1, i.e. if 

e<< K-'cc 1 
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then we can approximate the Baker-Hausdorff formula (Weiss and Maradudin 1962) 
by 

exP(KA) exp(77P) =exp(77P) exP(KA). 
With this approximation the integration of (55’) yields 

77 d2 ---+ V[(1-r)u] ( 2K du2 (59) 

where exp(-Ks) = A/*. Making a change of variable x = (1 - r ) u  and redefining 
the eigenfunction h ( x / ( l -  r ) )  = h“(x), equation (59) can be written as 

with 

m* = ~ ~ 5 : .  (61) 
The form of (60) is exactly that encountered in the treatment of non-linear systems 
with N N  interactions. However, the particulars of our long-range interaction problem 
are comprised of the large parameter m*, the independent variable x and the redefined 
eigenfunction h”( x). By employing the generalised Langer transformationt (very 
adequate for problems with two turning points) (Nayfeh-Hasan 1973) used in a recent 
paper (Croitoru 1987), we succeed in determining the lowest eigenvalue of the isolated 
well in addition to the tunnel splitting of the degenerated isolated-well eigenvalue 
either into the lowest allowed band ( S G )  or into the two lowest allowed bands (DSG) 
due to the presence of the periodic sequence of the other wells. The compact expressions 
obtained for the eigenvalues corresponding to the bottom (b) and the top (t) of the 
lowest bands ( n  = 0 , l )  are listed below. 

(i) SG system: 

E00 - to &LO) = 

&,(O) = EOO+ to 

with 

being the lowest isolated-well eigenvalue and 
E00= 1/2AP&s 

to= [23/JY(m*)1/4~ exp(-PEk) 

being the tunneling rate where Ek 2: 8A&& approximates the energy of the static SG 

kink (with long-range interactions) and m* is defined in (61). This approximation of 
the kink energy is justified since the parameter U involved in (35a) is always small, 
allowing the series expansion of ( 3 5 ~ ) .  

(ii) DSG system 

&LO’ 2: E00 - ( t p  + t y ) )  
&t(O) 2: EOO - ( t p  - (11) t o  1 

,t(1)= E O O + ( t p +  #I)) 

(65a) 

(65b) 

2: & 00 + to  1 (66a) - (11) 

t For details concerning the application of the generalised Langer transformation to (60) with V ( + )  defined 
in (3a) and ( 3 b )  the reader is referred to Croitoru (1987). 
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where ti"") are the tunneling rates through the type-I and type-I1 barriers, respectively 
and eO0 is the lowest isolated-well eigenvalue (63). The tunneling rates are 

with 

The superscripts (I, 11) label the two different kink solutions. In the expressions (68a) 
and (68b), pl and pz represent the two turning points which result from 
Iq(x) l= I E  - V ( x ) l =  0, and are approximately given by pl = 41 -2&, pz = 4' +2&, 
V ( x )  being defined in (3b). 

In the low-temperature regime the only contribution to the partition function stems 
from (62a) (SG system) and from (65a) (DSG system). Then the free energy per unit 
length will be 

where in the DSG case to = ti1) + tt'). 
We remark that for both models, the kinks make major contributions to the free 

energy density, and consequently to all thermodynamic quantities which may be derived 
from it. For a = 0, ti1'= ti1') and we recover the SG result (64). We conclude this 
subsection with a final comment. For a given temperature P, the differential equation 
(60) will still include a large parameter m * = ~ ' & ,  if &+03 ( r + l ) .  In this case, in 
accordance with (64), (67), (68a) and (68b), the tunnelling rates through the barriers 
will vanish, i.e. whatever the temperature may be we encounter an ordered phase. That 
certainly cannot be true; therefore the results obtained so far for small r cannot be 
extended to get information regarding the behaviour of the systems in the limit r +  1. 
This limit has to be treated separately by another method (Sarker and Krumhansll981). 

F = (1/p) ln(phduo)+Aw;&OO-Au;tO (70) 

3.2. Van der Waals limit: r +  1 

Using (46a) together with (49b), the presence of the 6 function allows us to write 
+W 

d 4  exp(-PW(4)+K4x)g(( l -r)4+rx)=Ag(x)  (71) 
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where we have made the change of variable 

u = x/ (  1 - r) 

and also redefined the eigenfunction l ( u )  as 

l ( u )  * (726) 
The presence of the small parameter 1 - r = F<< 1 enables us to approximate the 
eigenfunction g(& + m )  as follows: 

g(x+CL(4 -x))=;:exp[(4 -x)q(x)lg(x) (73) 

d x )  = /a’(x)/g(x) g’(x) = dg(x)/dx. (74) 

where 

Substituting (73) into (71) we obtain 
+oo 

A = J-oo d 4  exp[-PW(4)+4(Kx+q(x))I  exp(-xq(x)). (75) 

The fact that the eigenvalue A has to be independent of the variable x allows us to 
evaluate (75) for any value of x. The non-dependence of A on x may also be expressed 
by setting dA/dx = 0, a relation which leads to 

and 

x = Kx+ q(x). (79) 
The existence of the expansion (73) requires that q’= p(g”g -g’*)/g’ has to be finite; 
therefore the denominator and numerator of (76) must vanish simultaneously. If they 
vanish at x = xo then the requirement stated above leads to the relations 

2 0  = K x o +  q ( x 0 )  = 2KG(Zo) (sou) 
and 

dxo) = m o .  

Then the eigenvalue A. can be written 

A o =  exp(-Z~/4K)F(Zo) (81) 
and the free-energy density will be 
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Knowing the formal expression for the free-energy density one can immediately deduce 
the internal energy, the specific heat and the magnetisation per particle (order para- 
meter): 

U = i k ~  T - Zi /4PK (83) 
d G  GI=- 1 1 ZiG’(Zo) 

-cy=-+ 
kB 2 1-2KGf(Z0)  dZ0 

d 2 0  (4)=m=-(-PF)=G(Zo)=- 
a(PH) 2K 

(84) 

(85) 

where H is the applied external field, and G(2,) = Go(Zo+BH) is defined by (77) 
with W(+)  = W0(4)  - H+. The subscript zero refers to zero-field quantities. The 
relation (85) also holds for H = 0; then, if Z = 0, a spontaneous order will exist in the 
system. In the following we shall refer only to this latter situation. From the relations 
listed above it is evident that the basic quantity which has to be determined is 2,; this 
can be achieved by resolving (80a) numerically. In the vicinity of the critical tem- 
perature this numerical evaluation of 2, can be avoided. Because of the fact that 
Go(Zo) is an odd function of Z,, (see equation (77)), 2, = 0 will be a solution of (80a). 
In the neighbourhood of this solution Go(Zo) can be approximated by the series 
expansion 

Go(Zo) = bo(K, 8)2,- bl (K,  8)Z:. . . (86) 
where the subscript zero indicates the fact that we are looking for solutions in the 
absence of an external magnetic field. The parameter 8 = u ; / c ;  defined in (56) varies 
from zero to infinity; in the following we shall investigate the behaviour of the systems 
under study in two limiting cases: (i)  f3 + CO (the coupling between the atoms is much 
weaker than the on-site potential) and (ii) 8 + 0 (the coupling between the atoms is 
much stronger than the on-site potential). The coefficients bo and b, are positive 
quantities, and in general functions of K and 8. Taking into account (80a) and (86) 
we may write 

2i-k (2Kbo- 1) .  (87) 

If 2Kb0<1 then the only solution of (80a) (the only real solution of (87)) will be 
Zo=O. This regime corresponds to the disordered phase at high temperatures. If 
2Kb0> 1, then (87) also admits a non-zero real solution, and so does (80a). In this 
case an ordered phase exists. Consequently the critical temperature will result from 

2K,bo(K,, 8 )  = 1. (88) 
Equation (87) tells us that the determination of 2, reduces to the evaluation of the 
two coefficients bo and b l .  The expressions for bo and bl are derived by Sarker and 
Krumhansl (1981) by expanding in power series of x the functions F ( x )  (78a), F’(x)  
(786) and G ( x )  (77). The expressions they obtain are 

where 
f W  

d+ 4zn  exp[-KeV(4) - K4’]  
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with V ( 4 )  given by (3a) and (3b) .  The exponential factor exp(-K+’), on the one 
hand, and the finite values taken by V(+), on the other hand, ensure the convergence 
of the improper integral (90). Moreover, only minimal contributions to the integral 
(90) will be made by values of 4 larger than those corresponding to the minima within 
a period. In contrast to the 44 system (Sarker and Krumhansl 1981), one cannot, in 
the SG and DSG models, establish a recurrence relation for the coefficients { a n } .  
Consequently in order to evaluate bl (89b) one has to calculate a,. Starting from the 
above relations (89a), (89b) and (90) and taking into account (3a) and (3b) as well 
as (84) we are in the position to determine the ‘critical temperature’ K,’ in the two 
stated limits. In the Ising limit 6 + q  bo= r2  (SG) and bo= 4; (DSG), so the ‘critical 
temperature’ is K , ’ = 2 r 2  (SG) and K,’=24: (DSG). In this limit, as expected, the 
magnetisation per particle (85) is given by 

Go(Zo) = 17 tanh( rZo) 

Go@,) = 41 tanh(41Zo) 
being expressions characteristic of the Ising model. 

the form 

SG case 
DSG case 

As 6 + 0 the integral (90) can be expanded about 6 + 0, by performing integrals of 

+W 

d+ +2n cos( a+) cos( b 4 )  exp( -K$J,) 

(Gradshteyn and Ryzhik 1980) we obtain K,’=4 (SG) and K,’=4(1 - a ) / ( l  -+a) 
(DSG), or for a<< 1, K;1=4(l- ia  -&’). Finally, we shall make some comments 
regarding the behaviour in the critical region of both the magnetisation and the specific 
heat per particle. Expanding bo and b, about Kc, one finds that the magnetisation per 
particle diverges as 

for both systems investigated in this paper. 

(84) will be 

If T = Ti, (80a)  also admits a solution 2, # 0 and the specific heat per particle becomes 

m = Z0/2K - ( Tc- T)l’, (92) 

Since for T = T: the only solution of (80a)  is 2, = 0, the specific heat per particle 

C,/ k B  = 4 T =  T: (93 a )  

In deriving these latter relations we made use of (84), (86), (88), (89a), (89b) and also 
(in the second expression) of (80a). 

In the limit 6+co we have 
a2(Kc)/a,(Kc) =* n=* K ,  = 1 / 2 r 2  SG case 

a , ( K c ) / a , ( K , )  = 4; Kc = 1/24? DSG case. 

and 



862 M Croitoru 

Then (93b) transforms into the known expression (Baker 1961, Sarker and Krumhansl 
1981) 

cv/ kB = + f T = T; .  (93b’) 

In the limit 8 = 0, both for the SG model and the DSG system, a2(Kc,  O ) / a , ( K , ,  0) 2: 
$( l /Kc),  and consequently (93b) diverges for 8 + 0, indicating another second-order 
phase transition. If we use the second expression of (93b) then the specific heat also 
diverges, due to the fact that b,? 0 when 8 = 0. We note that if we apply (936) to the 
44 model, for the two limiting cases 0 +cc and 0 = 0 we obtain the same behaviour 
as for the two models studied in the present paper. According to (93b), as long as 
8 # 0 then the second-order phase transition is characterised by a finite jump in the 
specific heat per particle. 

4. Conclusions 

In the preceding sections we have presented the main features of two non-linear systems 
with long-range interactions of the Kac-Baker type. As we have pointed out, throughout 
this paper the formalism adopted for studying the SG and DSG models with long-range 
interactions has been that developed in Sarker and Krumhansl(l981) for the investiga- 
tion of a 44 system with long-range interactions. The essential feature of this method 
is the conversion of all relevant expressions (equation of motion, potential energy, 
partition function) into equivalent expressions corresponding to problems with ‘nearest- 
neighbour’ interactions. In using this formalism we succeeded in deriving compact 
expressions for the kink solutions and kink energies. Whereas the kink solution and 
the kink energy for the SG model are represented by relatively simple closed-form 
expressions (27), (35a) and (35b), in the DSG case the two different kink solutions 
and their associated energies are given by rather complicated expressions (28a), (28b), 
(36a), (36b), (37a) and (37b), which also involve all three kinds of elliptical integrals. 
However, if the interaction-range parameter, r, is zero, these solutions reduce to the 
well known solutions either of the SG chain or the DSG model with NN interactions. 
From these relations it follows that as long as the parameter r assumes small values, 
for both systems studied here, the kinks are well defined ‘elementary excitations’ of 
finite width (static kink) and small activation energy. As the interaction range is 
increased ( r  + 1) the kink width as well as the kink energy both become indefinitely 
large, i.e. the kink disappears. Although the kink solutions and kink energies differ 
from those of the 44 model, the qualitative behaviour is similar, as expected. 

The thermodynamical properties of the SG and DSG models, have been investigated 
in two limiting cases: (i) small values of r and (ii) r + 1 (van der Waals limit, infinite 
interaction range). Let us now summarise the characteristics of the thermodynamical 
behaviour of the two systems investigated in this paper in the limits stated above. For 
small values of r, we investigated the low-temperature thermodynamics of the SG and 
DSG systems by means of an asymptotic procedure adequate for solving the eigenvalue 
problem of a second-order differential equation which depends on a large parameter 
(Nayfeh-Hasan 1973, Croitoru 1987) and involves two turning points. In doing so we 
determined the temperature dependence of the free-energy density in the displacive 
limit. For both systems the free-energy density contains two parts: (i) a term which 
can be attributed to the free-energy density of a set of harmonic phonons when 
calculated to order 0(1/&) of the displacive limit; (ii) a term which can clearly be 
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associated with the kinks. In the SG case this latter term corresponds to the contribution 
of the single SG kink, while in the DSG case it involves the two DSG kinks. We remark, 
that this method also enabled us to determine the tunnel splitting of the lowest 
degenerate isolated-well eigenvalue into either one allowed narrow band (SG case) or 
into two allowed narrow bands (DSG case) for whose lower and upper extremities we 
obtained compact expressions (62) - (69) .  Furthermore we note that for a given tem- 
perature p the differential equation (60)  still includes a large parameter if & + CO ( r  + 1). 
But in this case, in accordance with the expressions for the tunnelling rates (64 ) ,  (67 ) ,  
( 6 8 a )  and (68b) ,  these latter will vanish due to the factor exp(-EKp), EK being the 
kink energy which in this limit becomes indefinitely large. This means that whatever 
the temperature may be, we encounter an ordered phase. As this cannot be true, the 
method adopted for small values of r does not allow us to extract conclusions about 
the behaviour of the systems as r + 1. By using the procedure employed by Sarker 
and Krumhansl(l981) in this limit, we succeeded in demonstrating that for the infinite 
interaction range limit, the SG and DSG systems undergo a second-order phase transition. 
For the latter we determined the ‘critical temperature’ as well as the behaviour of the 
magnetisation and specific heat per particle in the critical region. 

Acknowledgments 

We wish to thank Dr D Grecu for helpful discussions. 

References 

Baker G A Jr 1961 Phys. Rev. 122 1477 
Bishop A R, Krumhansl J A and Trullinger S E 1980 Physica 1D 1 
Condat C A, Guyer R A and Mills M D 1983 Phys. Rev. B 27 474 
Croitoru M 1987 J. Phys. A: Math. Gen. 20 1695 
Croitoru M, Grecu D, Visinescu A and Cionga V 1984 Rev. Roum. Phys. 29 853 
Currie C A, Krumhansl J A, Bishop A R and Trullinger S E 1980 Phys. Rev. B 22 477 
DeLeonardis R M and Trullinger S E 1979 Phys. Rev. A 20 2605 
- 1983 Phys. Rev. B 27 1867 
Flytzanis N, Pnevmatikos S and Remoissenet M 1987 Physica 26D 311 
Giachetti R, Sodano P, Sorace E and Tognetti V 1984 Phys. Rev. B 30 4014 
Gradshteyn I S and Ryzhik I M 1980 Tables oflntegrals, Series and Products (New York: Academic) 
Gupta N and Sutherland B 1976 Phys. Rev. A 14 1790 
Guyer R A and Miller M D 1978 Phys. Rev. A 17 1205 
Ishimori Y 1982 Prog. Theor. Phys. 68 402 
Krumhansl J A and Schrieffer J R 1975 Phys. Rev. B 11 3535 
Leung K M 1982 Phys. Rev. B 26 226 
- 1983 Phys. Rev. B 27 2877 
Nayfeh-Hasan A 1973 Perturbation Methods (New York: Wiley) p 339 
Pandit R, Tannous C and Krumhansl J A 1983a Phys. Rev. B 28 181 
- 1983b Phys. Rev. B 28 289 
Pnevmatikos S 1984 Proc. Int.  ConJ: on Singularities and Dynamical Systems ed S Pnevmatikos (Amsterdam: 

Remoissenet M and Flytzanis N 1985 J. Phys. C: Solid State Phys. 18 1573 
Remoissenet M and Peyrard M 1984 Phys. Rev. B 29 3153 
Sarker S K and Krumhansl J A 1981 Phys. Rev. B 23 2374 
Trullinger S E and DeLeonardis R M 1979 Phys. Rev. A 20 2225 
Viswanathan K S and Meyer D H 1977 Physica 89A 97 
Weiss G H and Maradudin A A 1962 J. Math. Phys. 2 77 

North Holland) 


